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10  Abstract. The Greenhouse Gases Observing Satellite (GOSAT) was launched in 2009 to measure global atmospheric CO,
and CH,4 concentrations. GOSAT is equipped with two sensors: the thermal and near-infrared sensor for carbon observation
(TANSO)-Fourier transform spectrometer (FTS) and TANSO-cloud and aerosol imager (CAI). The presence of clouds in the
instantaneous field of view of the FTS leads to incorrect estimates of the concentrations. Thus, the FTS data suspected to
have cloud contamination must be identified by a CAI cloud discrimination algorithm and rejected. Conversely,

15 overestimating clouds reduces the amount of FTS data that can be used to estimate greenhouse gases concentrations. This is
a serious problem in tropical rainforest regions, such as the Amazon, where the amount of useable FTS data is small because
of cloud cover. Preparations are continuing for the launch of the GOSAT-2 in fiscal year 2018. To improve the accuracy of
the estimates of greenhouse gases concentrations, we need to refine the existing CAI cloud discrimination algorithm: Cloud
and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA1). A new cloud discrimination algorithm using a support

20  vector machine (CLAUDIA3) was developed and presented in another paper. Visual inspection can use the locally optimized
standards for judging, although CLAUDIA1 and CLAUDIA3 use common thresholds all over the world. Thus, the accuracy
of visual inspection is better than that of these algorithms in most regions, with the exception of snow and ice covered
surfaces, where there is not enough spectral contrast to distinguish cloud. For the reason visual inspection can be used for the
truth metric for the verification exercise. In this study, we compared between CLAUDIA1-CAI and CLAUDIA3-CALI for

25 various land cover types, and evaluated the accuracy of CLAUDIA3-CAI by comparing the both of CLAUDIA1-CAI and
CLAUDIA3-CALI against visual inspection of the same CAI images in tropical rainforests. Comparative results between
CLAUDIA1-CAI and CLAUDIA3-CAI for various land cover types indicated that CLAUDIA3-CAI had tendency to
identify bright surface and optically thin clouds, however, misjudge the edges of clouds as compared with CLAUDIA1-CAI
The accuracy of CLAUDIA3-CAI was approximately 89.5 % in tropical rainforests, which is greater than that of

30 CLAUDIAI-CAI (85.9 %) for the test cases presented here.
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1 Introduction

Greenhouse Gases Observing Satellite (GOSAT) was launched in 2009 to measure global atmospheric CO, and CH,4
10 concentrations. Preparations are continuing for the launch of its successor, GOSAT-2, in fiscal year 2018. The missions of
GOSAT-2 are as follows: to continue and improve the satellite measurements of major greenhouse gases performed by
GOSAT; to monitor the effects of climate change and human activities on the carbon cycle; and to contribute to climate
science and climate change related policies (NIES GOSAT-2 Project, 2014). These policies include Reducing Emissions
from Deforestation and forest Degradation and the role of conservation, sustainable management of forests and enhancement
15  of forest carbon stocks in developing countries (REDD+), and the Joint Crediting Mechanism (JCM), which was proposed
by the Japanese government to facilitate the diffusion of leading low-carbon technologies, products, systems, services, and
infrastructure in developing countries (Ministry of the Environment, Japan, 2015). Monthly regional CO, fluxes are
estimated from the column-averaged dry air mole fractions of CO, (XCO,) retrieved from spectral observations made by
GOSAT (Maksyutov et al., 2013). The result is publicly available as the L4A CO, product (Maksyutov et al., 2014). The
20 expected role of the CO, fluxes estimated from the GOSAT data is the system for measurement, reporting and verification
(MRV) of CO, fluxes estimated from forest inventory data. Currently, the uncertainty of the L4A CO, product is about 0.9
Gt-C/region/year in the Amazon (L4A CO, product V02.03 in region In 09-12, 2009-2012). Thus, total net CO, flux from
deforestation for the period 2000-2010 in tropical America was estimated to be 0.56 Gt-C/year (Baccini et al., 2012).
Accuracy 16 times higher than at present is required assuming that the MRV for REDD+ and JCM needs an accuracy of
25 10 %.

GOSAT is equipped with two sensors: the Thermal and Near-infrared Sensor for Carbon Observation (TANSO)-Fourier
Transform Spectrometer (FTS) and TANSO-Cloud and Aerosol Imager (CAI) (Table 1). The presence of clouds in the
instantaneous field of view of the FTS leads to incorrect estimates of greenhouse gas concentrations (Uchino et al., 2012). To
solve the problem, the FTS data suspected to have cloud contamination must be identified by the Cloud and Aerosol

30 Unbiased Decision Intellectual Algorithm used with CAI (CLAUDIA1-CAI) (Ishida and Nakajima, 2009) and rejected. The
cloud information is publicly available as the CAI L2 cloud flag product. However, CAI does not have a thermal infrared

band. In general, cirrus cloud is identified by using multiple thermal infrared bands, which include water vapour absorption
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bands (Ishida et al., 2011a). Meanwhile, the FTS has a 2 um band that contains many strong water vapour absorption bands.
Moreover, the CAI L2 cloud flag product may not be sensitive enough to detect clouds of sub-pixel size in ocean
observations. To cope with these difficulties, the FTS data suspected to have cloud contamination are identified by two
additional tests: the 2 pm band test and the CAI coherent test (Yoshida et al., 2010). Conversely, overestimation of clouds
reduces the amount of the FTS data that can be used to estimate greenhouse gas concentrations. This is a serious problem in
tropical rainforest regions, such as the Amazon, where there is a small amount of suitable FTS data (approximately 3 % of
the number of observations) because of cloud cover (Figs. 1, 2). For the reason we need to optimize thresholds between
cloud and clear-sky because there are tradeoffs in maximizing accuracy while minimizing overlook and overestimate. To
solve the problem, a new cloud discrimination algorithm (CLAUDIA3) using a support vector machine (SVM) (Vapnik and
Lerner, 1963) was developed (Ishida et al., 2018). CLAUDIA3 can automatically identify the optimized thresholds only
using obvious clear-sky training data although CLAUDIA1 needs to optimize thresholds in manually. Verification was also
performed by comparing with the MODIS cloud mask algorithm (Ackerman et al., 2010) and ceilometer data provided by
Atmospheric Radiation Measurement (ARM) (Mather and Voyles, 2013) in the paper (Ishida et al., 2018). Furthermore the
impact of different Support Vector generation procedures on cloud discrimination using CLAUDIA3 has also been evaluated

in a previous study (Oishi et al., 2017).

Table 1: Specifications of CAIL

Band 1 Band 2 Band 3 Band 4
Spectral coverage NUvV Red NIR SWIR
(um) 0.370-0.390 0.664-0.684 0.860-0.880 1.56-1.65
Swath (km) 1000 1000 1000 750
Spatial resolution
At nadir (m) 500 500 500 1500
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Figure 1: Monthly changes in the number of FTS L2 XCO, data in the Amazon. The five-point cross track scan mode
was used until 1 August 2010, when it was replaced with the three-point cross track scan mode. Therefore the

numbers themselves before and after 1 August 2010 cannot be compared. (single column)
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Figure 2: Clear-sky probability at 0.1° x 0.1° calculated with MYD35_L2. There are low clear-sky probabilities over

most tropical rainforests because the moisture helps create clouds. (single column)

10 The accuracy of CLAUDIA1-CAI was evaluated by comparing it with the MODIS/Aqua cloud mask data product
(MYD35) (Ackerman et al., 2010) because the MODIS cloud mask algorithm uses a larger number of bands for cloud
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discrimination than CLAUDIA1-CAI and CLAUDIA1 was developed based on the MODIS cloud mask algorithm (Taylor

et al., 2012; Ishida et al, 2011b). However, these comparisons cannot identify common weak points in the algorithms and
another verification method is required. Visual inspection can use locally optimized standards for judging, whereas
CLAUDIA1 and CLAUDIA3 use the common thresholds globally. Thus, the accuracy of visual inspection is better than that

5 of these algorithms in most regions, with the exception of snow and ice covered surfaces, where there is not enough spectral
contrast to distinguish cloud. For the reason visual inspection can be used for the truth metric for the verification exercise.
Therefore, the accuracy of CLAUDIA1-CAI also has been evaluated by visual inspection in tropical rain forests (Oishi et al.,
2014). In this study, we deal with the application of the CLAUDIA3 to GOSAT CAI data. And then, we compare between
CLAUDIA1-CAI and CLAUDIA3-CALI for various land cover types, and evaluate the accuracy of CLAUDIA3-CAI by

10 comparing the both of CLAUDIA1-CAI and CLAUDIA3-CALI against visual inspection of the same CAI images in tropical

rainforests.

2 Materials and Methods
2.1 Study area and data

The study area for various land cover types is the same as the previous study (Oishi et al., 2017) (Fig. 3).

15 The total forest area in the Amazon, Congo, and Southeast Asia rainforest basins is over 13 million kmz, which
corresponds to one-third of the total global forest area (FAO and ITTO, 2011). The three most forest-rich countries (Brazil,
Democratic Republic of Congo, and Indonesia) account for 57 % of the total global forest area (FAO and ITTO, 2011).
However, the total net emissions of carbon from tropical deforestation and land use were estimated to be 1.0 Pg-C/yr in the
three rainforest basins (Baccini et al., 2012). In particular, Brazil and Indonesia have by far the highest and second highest

20 deforestation rates, respectively (Fig. 4). Therefore, the study area for rainforests is Borneo and the Amazon (Fig. 5).

GOSAT returns to a similar footprint after 44 orbits (44 CAI paths) in three days. The satellite ground path of one orbit is
divided into 60 equidistant CAI frames. We used the GOSAT CAI L1B product, which general users could download from
the GOSAT User Interface Gateway (GUIG, https://data.gosat.nies.go.jp), for various land cover types on the beginning of
the month from 2012 to 2014 in the same as the previous study (Oishi et al., 2017) (Table 2), and for rainforests (Table 3).

25  Currently GUIG has been changed to GOSAT Data Archive Service (GDAS, https://data2.gosat.nies.go.jp/index_en.html).
The spatial resolution of these products (pixel size at nadir) is 500 m, the image size is 2048 x 1355 pixels (approximately
1000 x 680 km). The CLAUDIA algorithm requires a land/sea mask and a surface albedo data. The CAI L1B product
includes the Shuttle Radar Topography Mission’s 15" land/sea mask. For areas with latitudes higher than £60°, the USGS
Global Land 1-KM AVHRR Project mask is used. Surface albedo data at 1/30° resolution was generated from the CAI L1B

30 data from 10 recurrent cycles by separating the land and water regions. This processing consists of three steps (Ishihara and
Nobuta, 2013): (1) calculate the minimum reflectance to remove cloud-contaminated pixels; (2) cloud shadow correction

(Fukuda et al., 2013); and (3) atmospheric correction.
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Figure 3: Study areas for various land cover types. Black rectangles indicate the location of CAI frames. (single

column)
5
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Figure 4: List of top 10 countries for changes in deforestation area (million ha) from 1990 to 2005. These were
calculated with data from the Global Forest Resources Assessment 2005 (FAO, 2005). (single column)
Amazon 45 Borneo
(28-30_31-33) TSN y (7.30-31)
10
Figure 5: Study areas in Borneo and the Amazon. CAI path and frame system: XX_YY (XX indicates CAI path
number and YY indicates CAI frame number). Red rectangles indicate the locations of CAI frames. The background
image was generated from the CAI L3 global reflectance distribution product (15 June 2013 to 14 July 2013). (single
column)
15
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Table 2: GOSAT CAI L1B product and CAI L2 cloud flag product used for various land cover types in this study.

Land cover was derived from the MODIS land cover type product (MCD12). Japan scenes include urban areas.

Location

(CAI Path_Frame) Data Period Land Cover
Australia (4_35) 3 April 2012-3 March 2014 Open shrublands
Japan (5_25) 1 April 2012—-1 March 2014 Mixed forests
Borneo (7_31) 3 April 2012-3 March 2014 Evergreen broadleaf forest
Thailand 1 (9_28) 2 April 2012-2 March 2014 Cropland/natural vegetation
Thailand 2 (9_29) 2 April 2012-2 March 2014 Cropland/natural vegetation
Mongolia (10_23) 3 April 2012-3 March 2014 Grasslands
Algeria (22 26) 3 April 2012-3 March 2014 Barren or sparsely vegetated
Canada (32 22) 1 April 2012—-1 March 2014 Evergreen needleleaf forest
Alaska (43 19) 1 April 2012—1 March Open shrublands

Table 3: GOSAT CAI L1B product and CAI L2 cloud flag product used for rainforests in this study.

Borneo Amazon

Date Location Date Location

(yy/mm/dd) (CAI Path Frame) (yy/mm/dd) (CAI Path Frame)

10/04/02 7 30 11/08/28 28 31
10/01/02 7 31 11/08/28 28 32
10/04/02 7 31 11/08/28 28 33
10/07/01 7 31 11/08/29 29 31
10/07/07 7 31 10/08/28 29 32
10/07/13 7 31 11/02/03 29 32
10/07/19 7 31 11/04/01 29 32
10/07/28 7 31 11/06/03 29 32
10/09/02 7 31 11/08/02 29 32
10/11/01 7 31 11/08/08 29 32
11/08/14 29 32
11/08/23 29 32
11/08/29 29 32
11/10/01 29 32
11/12/03 29 32
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2.2 CLAUDIA1

CLAUDIA1-CAI comprises the calculation of clear-sky confidence levels (CCL) for every threshold test and their
comprehensive integration (Ishida and Nakajima, 2009). Integrated-CCL of 0 means that the pixel is cloudy and 1 means that
the pixel is cloud-free. Ambiguous pixels between cloudy and cloud-free are described by numerical values from 0 to 1. The

threshold below which the integrated-CCL counts the pixel as cloud-free for GOSAT FTS L2 is 0.33, otherwise the pixel is

11/08/29 29 33
11/08/30 3031
11/08/30 30_32
11/08/30 3033

regarded as cloudy (Yoshida et al., 2010). The flow of the algorithm is shown in Fig. 6.
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Figure 6: Flow chart for CLAUDIA1-CALI For sun-glint areas, the thresholds are further increased based on the Rg;

um test. CCL: confidence level; R, ayeiengin: reflectance; NDVI: normalized difference vegetation index. (2 column)

2.3 New cloud discrimination algorithm (CLAUDIA3)

5 CLAUDIAI performs cloud discrimination by using thresholds set based on experience. The new cloud discrimination
algorithm (CLAUDIA3, Ishida et al., 2018) uses SVM to decide the thresholds objectively by using multivariate analysis.
SVM is a supervised pattern recognition method. First, it determines the following items using training samples of typical
clear and cloudy pixels: 1) a decision function to discriminate between two classifications (clear and cloudy), 2) the
thresholds, and 3) the support vectors, which are training samples specified by the decision function. The support vectors are

10 decided in a high-dimensional feature space of the training samples. Next, it performs cloud discrimination by using the
decision function, thresholds, and support vectors it determined. CLAUDIA3 applies the kernel trick (Boser et al., 1992) to
soft-margin SVM (Cortes and Vapnik, 1995). The kernel uses a second-order polynomial (Eq. (1))

2
K(x,x) = ZoXtD” 0
2
where K is the kernel function, x; is the support vectors, and x is input data. The flow of CLAUDIA3-CALl is explained in Fig.
15 7. For CLAUDIA3-CAL an integrated-CCL of 0.5 corresponds to the separating hyperplane of clear support vectors and
cloudy support vectors. In this study, we used two kinds of support vector: (1) support vectors generated by using MODIS
data in February for cloud discrimination between November and April, and (2) support vectors generated by using MODIS

data in August for cloud discrimination between May and October based on a previous study (Oishi et al., 2017).
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Figure 7: Flow chart for CLAUDIA3-CAI. CCL: clear-sky confidence level; Rwavelength: reflectance; NDVI:

normalized difference vegetation index. (2 column)

5 2.4 Analysis procedure for rainforests

The analysis procedure consists of the following steps (Fig. 8).
1) Cut 400 x 400 pixels around the centre of CAI L1B images.
2) Perform visual inspection of the pixels cut from the CAI L1B images.
We performed a visual inspection of the presence or absence of clouds in every pixel.
10 3) Perform cloud discrimination by using CLAUDIA1-CAI and CLAUDIA3-CAL
For CLAUDIA1-CAI, we produced output images setting the integrated-CCL threshold to 0.33. For CLAUDIA3-CAI, we
produced output images setting the integrated-CCL threshold to 0.5.

10
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4) Compare output with visual inspection.

We coloured the images by comparing the visual inspection images with the output images pixel-by-pixel.

[] Both determined cloudy B Determined as loudy despite clear

Ml Both determined clear [l Determined as clear despite cloudy

5 Figure 8: Analysis procedure. (a) CAI L1B image. (b) Visual inspection image of CAI L1B. (c) Output image from
CLAUDIA1-CAI (CAI L2 cloud flag product) or CLAUDIA3-CALI. Pixels that are determined as cloudy are black.
(d) Comparison of the visual inspection image and the output image. Pixels that are determined as cloudy in both are
white. Pixels that are determined as clear in both are blue. Pixels that are determined as cloudy in the output image
and clear in the visual inspection image are green. Unusual pixels that are determined as clear in the output image

10 and cloudy in the visual inspection image are red. (2 column)

3 Results

In this study, “accuracy” is defined as the ratio of the number of pixels for which the standard image and output from the
cloud discrimination algorithm agree to the total number of pixels in the input image. “Overlook” is defined as the ratio of
the number of pixels judged clear in the output and cloudy in the standard image to the number of pixels that were judged

15 cloudy in the standard image. “Overestimate” is defined as the ratio of the number of pixels judged cloudy in the output and

11
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clear in the standard image to the number of pixels judged clear in the standard image. These definitions are written as

follows.
Both cloudy + Both clear
Accuracy = - , )
Total number of pixels
Overlook — Clear despite cloufly ’ 3)
Both cloudy + Clear despite cloudy
s Overestimate — Cloudy despite clear @

Both clear + Cloudy despite clear

3.1 Results for various land cover types

Figure 9 shows the monthly average accuracy, overlook, and overestimate for an integrated-CCL threshold of 0.33 for
CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI. We used the CLAUDIA1-CAI result as the standard image.

In Australia and Algeria, Overlook was greater than Overestimate; there was tendency that CLAUDIA3-CAI judged clear,

10 despite CLAUDIA1-CALI judged cloudy.

In Japan, Borneo, Canada, and Alaska, Overestimate was greater than Overlook; there was tendency that CLAUDIA3-
CAI judged cloudy, despite CLAUIDA1-CALI judged clear.

In Thailand and Mongolia, there was seasonal variation. In Thailand, Overlook was greater than Overestimate from March
to May, and Overestimate was greater than Overlook from June to February. In Mongolia, Overestimate was greater than

15 Overlook from February to March, and Overlook was greater than Overestimate from April to January.

Figure 10 compares the output images of CLAUDIA1-CAI and CLAUDIA3-CAI for select cases in each region.

In Australia and Algeria, CLAUDIA3- CAI could identify bright surface, however, there were a few oversights of the
edges of clouds.

In Japan, CLAUDIA3-CAI misjudged vegetation areas as clouds.

20 In Borneo, CLAUDIA3-CALI could identify optically thin clouds.

In Canada and Alaska, they were snow or ice covered scenes. Since the CAl is not equipped with any thermal infrared
bands, cloud discrimination based on the temperature at the top of clouds is not feasible. Accordingly, it is difficult to
discriminate between ice or snow and clouds. The difference or coincidence between CLAUDIA1-CAI and CLAUIDA3-
CAI was attributed to this source of error.

25 In Thailand, CLAUDIA3-CAI could judge smokes as non-clouds, despite CLAUDIA1-CAI judged clouds, however, there
were oversights of optically thin clouds and the edges of clouds on 3 April 2013. Furthermore CLAUDIA3-CAI misjudged
clear muddy rivers and boundaries between land and water as cloudy. This was also reported about CLAUDIA1-CALI in
previous study (Oishi et al. 2014). Conversely, CLAUDIA3-CALI could identify optically thin clouds on 2 September 2012.

12
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In Mongolia, it was snow covered scene on 3 February 2013 in the same as Canada and Alaska. On the other hand

CLAUDIA3-CAI could identify bright surface, however, there were a few oversights of the edges of clouds on 2 June 2012.

13
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Figure 9: Monthly average accuracy, overlook, and overestimate for various land cover types. Blue line indicates

“Accuracy”, red line indicates “Overlook, and green line indicates “Overestimate”. (2 column)
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5 Figure 10: CAI L1B images (R: Band 2, G: Band 3, B: Band 1) and comparative results of CLAUDIA1-CAI and
CLAUDIA3-CALI for various land cover types. (2 column)
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3.2 Results in the Amazon

Figure 11 compares the visual inspection images and the output images for four select cases in the Amazon: low cloud cover,
high cloud cover, small scattered clouds, and optically thin clouds. We used the visual inspection result as the standard
image.

5 CLAUDIA3-CALI produced fewer overlooked clouds but slightly more overestimated clouds than CLAUDIA1-CAI did.
CLAUDIA3-CAI misjudged clear muddy rivers on 23 August 2011 in CAI Path 29, Frame 32 and the surroundings of
clouds on 1 April 2011 in CAI Path 29, Frame 32. The maximum accuracy values of CLAUDIA3-CAI and the CLAUDIA1-
CAI occur at different integrated-CCL values with the thresholds for the Amazon. Fig. 12 shows the average accuracy,
overlook, and overestimate of all the data in the Amazon for all 19 cases. These results indicate that the most suitable

10 integrated-CCL thresholds are 0.75 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CALI in the Amazon. Since curved lines of
overestimate and overlook intersect, CLAUDIA3-CAI can appropriately determine the boundary between cloud and clear-

sky.
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Figure 11: Comparison of the visual inspection images and the output images in the Amazon. Orange circles indicate
the maximum accuracy values. Orange dotted lines indicate the integrated-CCL thresholds. Blue line indicates

“Accuracy”, red line indicates “Overlook, and green line indicates “Overestimate”. (2 column)
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Figure 12: Average accuracy, overlook, and overestimate for all data for the Amazon. The most suitable integrated-
CCL thresholds are 0.75 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI in the Amazon. (single column)

5 Table 4 shows the results for an integrated-CCL threshold of 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CALI, and
Table 5 shows the results for an integrated-CCL threshold of the maximum accuracy values in Fig. 12 (CLAUDIA1-CAL:
0.75, CLAUDIA3-CAI: 0.5). There was no notable change in the accuracies with the season or location. When the
integrated-CCL threshold was 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI, the accuracies were 87.0 % and
92.0 %, respectively. When the accuracy of CLAUDIA1-CAI was higher than that of CLAUDIA3-CAI, optically thick

10 clouds covered a wide area of the input images. Furthermore, when the integrated-CCL threshold was 0.75 for CLAUDIA1-
CAl and 0.5 for CLAUDIA3-CALI, the accuracy was the highest, at 88.3 % and 92.0 %, respectively. In the both cases, the
accuracy of CLAUDIA3-CAI was higher than that of CLAUDIA1-CAL

Table 4: Results for integrated-CCL thresholds of 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI in the

15 Amazon.

Accuracy (%) Overlook (%) Overestimate (%)

Date Location CLAUDIA1 CLAUDIA3 CLAUDIA1 CLAUDIA3 CLAUDIAL1 CLAUDIA3

(yy/mm/d  (CAI (0.33) (0.5) (0.33) (0.5) (0.33) (0.5)

d) Path_Frame)
11/08/28 28 31 84.6 95.1 56.6 16.9 0.0 0.5
11/08/28 28 32 80.6 92.9 49.7 7.5 0.1 6.9
11/08/28 28 33 92.0 95.9 11.6 13.4 7.4 2.4
11/08/29 29 31 87.6 93.8 27.2 9.5 0.3 35
10/08/28 29 32 89.8 90.8 32.6 9.9 1.7 9.0
11/02/03 29 32 86.6 92.9 355 2.4 0.5 9.9
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11/04/01 29 32 95.0 91.6 5.8 0.1 2.1 36.6

11/06/03 29 32 89.9 90.2 38.1 4.1 0.8 117

11/08/02 29 32 77.9 90.6 71.0 273 0.1 1.5

11/08/08 29 32 84.5 92.9 66.0 26.3 0.1 12

11/08/14 29 32 87.8 932 774 36.0 0.1 1.4

11/08/23 29 32 90.0 922 77.8 54.0 0.1 1.0

11/08/29 29 32 79.6 91.0 52.4 19.7 0.1 22

11/10/01 29 32 87.1 922 33.9 55 0.1 9.1

11/12/03 29 32 82.8 93.4 30.7 1.7 0.1 12.9

11/08/29 29 33 90.6 90.8 20.8 15.1 23 5.6

11/08/30 30 31 85.7 85.1 247 92 32 21.0

11/08/30 30 32 86.0 91.4 20.9 10.2 0.4 55

11/08/30 30 33 94.9 93.0 1.1 3.6 15 9.1

Average 87.0 92.0 39.1 143 1.1 79

Table 5: Results for integrated-CCL thresholds of the maximum accuracy values in Fig. 11 (CLAUDIA1-CAI: 0.75,
CLAUDIA3-CALI: 0.5) in the Amazon.

Accuracy (%) Overlook (%) Overestimate (%)
Date Location CLAUDIA1 CLAUDIA3 CLAUDIAl CLAUDIA3 CLAUDIAl CLAUDIA3
(yy/mm/dd) (CAI Path Frame) (0.75) (0.5) (0.75) (0.56) (0.75) (0.5)
11/08/28 28 31 86.9 95.1 479 16.9 0.0 0.5
11/08/28 28 32 84.2 92.9 40.2 7.5 0.2 6.9
11/08/28 28 33 83.6 95.9 7.1 134 18.1 24
11/08/29 29 31 89.6 93.8 21.8 9.5 1.2 35
10/08/28 29 32 90.6 90.8 23.5 9.9 4.0 9.0
11/02/03 29 32 88.9 92.9 27.8 2.4 1.4 9.9
11/04/01 29 32 96.2 91.6 3.7 0.1 4.1 36.6
11/06/03 29 32 90.9 90.2 29.3 4.1 2.4 11.7
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11/08/02 29 32 80.1 90.6 63.6 273 03 15

11/08/08 29 32 85.9 92.9 59.4 26.3 0.2 12

11/08/14 29 32 88.8 93.2 70.1 36.0 0.2 1.4

11/08/23 29 32 90.9 922 703 54.0 0.1 1.0

11/08/29 29 32 822 91.0 455 19.7 0.2 22

11/10/01 29 32 89.7 922 26.6 55 0.4 9.1

11/12/03 29 32 86.7 93.4 233 1.7 05 12.9

11/08/29 29 33 90.9 90.8 13.5 15.1 6.4 5.6

11/08/30 30 31 87.1 85.1 20.4 9.2 4.9 21.0

11/08/30 30 32 89.9 91.4 147 10.2 1.0 55

11/08/30 30 33 95.1 93.0 7.0 3.6 3.6 9.1

Average 883 92.0 32.4 14.3 2.6 7.9

3.3 Results in Borneo

Figure 13 compares the results of the visual inspection images and the output images for two select cases in Borneo: small
scattered clouds and optically thin clouds. We used the visual inspection result as the standard image. The comparison of the

5 results for Borneo is similar to that for the Amazon. Figure 14 shows the average accuracy, overlook, and overestimate of all
data for all cases in Borneo. These results indicate that the most suitable integrated-CCL thresholds are 0.85 for the
CLAUDIA1-CAI and 0.35 for CLAUDIA3-CAI in Borneo. Since curved lines of overestimate and overlook intersect as
same as the Amazon cases, CLAUDIA3-CAI can appropriately determine the boundary between cloud and clear-sky.
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Figure 13: Comparison of the visual inspection images and the output images in Borneo. Orange circles indicate the

maximum accuracy values. Orange dotted lines indicate the integrated-CCL thresholds. Blue line indicates

“Accuracy”, red line indicates “Overlook, and green line indicates “Overestimate”. (2 column)
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Figure 14: Average accuracy, overlook, and overestimate for all data for Borneo. The most suitable integrated-CCL

thresholds are 0.85 for CLAUDIA1-CAI and 0.35 for CLAUDIA3-CALI in Borneo. (single column)

10 Table 6 shows the results for an integrated-CCL threshold of 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CALI and
Table 7 shows the results for an integrated-CCL threshold of the maximum accuracy values in Fig. 14 (CLAUDIA1-CALI:

0.85, CLAUDIA3-CALI: 0.35). There was no notable change in the accuracies with the season or location, similar to the
results for the Amazon. For an integrated-CCL threshold of 0.33 for CLAUDIAI-CAI and 0.5 for CLAUDIA3-CAI, the
accuracy was 84.8 % and 86.9 %, respectively. Furthermore, for an integrated-CCL threshold of 0.85 for CLAUDIA1-CAI
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and 0.35 for CLAUDIA3-CAI, the highest accuracies of 87.5 % and 88.8 %, respectively, were obtained. In both cases, the
accuracy of CLAUDIA3-CAI was greater than that of CLAUDIA1-CAL

Table 6: Results for integrated-CCL thresholds of 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI in Borneo.

Accuracy (%) Overlook (%) Overestimate (%)

Date Location CLAUDIAl CLAUDIA3 CLAUDIA1 CLAUDIA3 CLAUDIAlI CLAUDIA3
(yy/mm/dd) (CAI Path_Frame) (0.33) (0.5) (0.33) (0.5) (0.33) (0.5)
10/04/02 7_30 89.7 91.7 28.8 1.7 0.1 12.0
10/01/02 7 31 85.6 85.0 25.8 1.8 0.6 31.1
10/04/02 731 94.8 85.4 8.3 0.6 3.5 22.8
10/07/01 731 90.8 92.2 29.0 5.0 0.4 9.0
10/07/07 731 76.5 85.9 54.2 225 0.5 7.8
10/07/13 731 88.2 89.1 32.6 5.8 2.0 133
10/07/19 731 77.1 88.4 31.1 11.0 1.0 13.5
10/07/28 731 70.6 81.5 44.8 8.2 1.1 37.5
10/09/02 731 89.3 87.8 37.8 6.5 1.3 14.2
10/11/01 7 31 85.8 81.8 20.6 0.4 1.2 54.7
Average 84.8 86.9 31.3 6.3 1.2 21.6

Table 7: Results for integrated-CCL thresholds of the maximum accuracy values in Fig. 13 (CLAUDIA1-CAI: 0.85,
CLAUDIA3-CALI: 0.35) in Borneo.

Accuracy (%) Overlook (%) Overestimate (%)
Date Location CLAUDIA1 CLAUDIA3 CLAUDIA1l CLAUDIA3 CLAUDIAl CLAUDIA3
(yy/mm/dd) (CAI Path_Frame) (0.85) (0.35) (0.85) (0.35) (0.85) (0.35)
10/04/02 730 91.9 94.6 223 8.5 0.3 3.8
10/01/02 731 89.2 90.7 16.8 8.0 3.6 10.9
10/04/02 731 93.8 91.5 4.6 2.3 7.2 12.2
10/07/01 7 31 92.1 93.2 21.5 10.3 1.9 5.3
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10/07/07 731 79.4 835 46.1 33.0 1.6 42
10/07/13 731 88.9 90.9 25.1 11.4 44 79
10/07/19 731 81.7 83.4 24.1 20.1 27 7.1
10/07/28 731 773 80.7 332 18.9 32 20.0
10/09/02 731 90.3 90.6 29.0 123 3.0 83
10/11/01 7 31 90.8 89.4 10.9 33 5.8 255
Average 87.5 88.8 23.4 12.8 34 10.5

10

15

20

4 Discussions and conclusions

Comparative results between CLAUDIAI-CAI and CLAUDIA3-CAI for various land cover types indicated that
CLAUDIA3-CALI had tendency to identify bright surface and optically thin clouds, however, misjudge the edges of clouds as
compared with CLAUDIA1-CAL There are tradeoffs in maximizing accuracy while minimizing overlook and overestimate.
Thus, it is sufficient to change the integrated-CCL threshold according to purpose. Furthermore, CLAUDIA3-CAI
misjudged vegetation areas as clouds in Japan. It is necessary to add clear training data of Japanese vegetation areas for
CLAUDIAS.

The averaged accuracy of CLAUDIA3 used with GOSAT CAI data (CLAUDIA3-CAI) was approximately 89.5 % in
tropical rainforests, which was greater than that of CLAUDIA1-CAI (85.9 %) for the test cases presented here. This is
mainly because, in contrast to CLAUDIA1-CAI, CLAUDIA3-CALI can detect optically thin clouds and the edges of clouds,
which prevents cloud-contaminated FTS-2 data from being processed as cloud-free FTS-2 data in the greenhouse gas
concentration calculations. However, CLAUDIA3-CAI tends to overestimate the surroundings of clouds, which are judged
to be cloudy despite being clear. Thus, CLAUDIA3-CALI is not expected to increase the amount of the FTS-2 data that can be
used to estimate greenhouse gas concentrations in tropical rainforests. Conversely, CLAUDIA3-CAI may be able to detect
optically thin clouds that cannot be detected by visual inspection.

CLAUDIA3-CAI misjudged clear muddy rivers and boundaries between land and water as cloudy in the same manner as
CLAUDIA1-CAL This has three possible causes: (1) insufficient training data for muddy rivers to distinguish the differences
in the spectral reflectance properties of muddy water and other water; (2) deviation of the positions in each CAI band owing
to the band-to-band registration error; and (3) insufficient resolution of the surface albedo data. The surface albedo data was
generated at 1/8° resolution by separating the land and water region. If the border pixels between land and water regions
were mixed pixels, the albedo data of 1/8° areas that include the mixed pixels would be included. To decrease this effect,

higher resolution surface albedo data are needed. For boundaries between land and water, the resolution of surface albedo
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data is being investigated because it may be the main problem; the misjudged regions and grid pattern of albedo data match.
CLAUDIA3-CALI is more sensitive to differences between land and water than CLAUDIA1-CAI because there is a large
difference in the structure of support vectors between land and water. However, generating higher resolution surface albedo
data from CAI L1B data for 10 recurrent cycles cannot completely remove clouds in the minimum reflectance calculation.
5 To solve this, initially we need to confirm whether 500 m resolution albedo data should be used. If necessary, we will
develop a new method for generating surface albedo data. For example, simple cloud discrimination could be added to
calculate the minimum reflectance, and if it is a cloud-contaminated pixel then the pixel is replaced by a minimum

reflectance pixel, which is calculated form the same month in several years.
Although we used MODIS data as training images to generate support vectors in this study, the MODIS data and CAI data
10 depend on observation conditions. In future work, we will use CAI data as training images to perform cloud discrimination
for CAI data. Furthermore, we will verify CLAUDIA3-CAI by using global CAI data with an alternative method. For
instance, comparison with satellite LIDAR data, such as CALIPSO, because it is impossible to perform visual inspection of
global data and visual inspection is also not itself perfect. Addressing these points will make CLAUDIA3-CAI more reliable

for GOSAT-2 CAI-2 cloud discrimination.
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